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We study learning from single presentation of examples~on-line learning! in single-layer perceptrons and
tree committee machines~TCMs!. Lower bounds for the perceptron generalization error as a function of the
noise levele in the teacher output are calculated. We find that local learning in a TCM withK hidden units is
simply related to learning in a simple perceptron with a corresponding noise levele(K). For a large number of
examples and finiteK the generalization error decays asaCM

21 , whereaCM is the number of examples per
adjustable weight in the TCM. We also show that on-line learning is possible even in theK→` limit, but with
the generalization error decaying asaCM

21/2. The simple Hebb rule can also be applied to the TCM, but now the
error decays asaCM

21/2 for finite K andaCM
21/4 for K→`. Exponential decay of the generalization error in both

the noisy perceptron learning and in the TCM is obtained by using the learning by queries strategy.

PACS number~s!: 87.10.1e, 02.50.2r, 05.90.1m, 64.60.Cn

I. INTRODUCTION

The simplest neural network architecture with generaliza-
tion properties is the single-layer perceptron. This network
has been studied with great detail by the statistical mechanics
community and provides a test ground for new ideas on
learning algorithms and strategies@1#.

One of these strategies recently studied is learning from
single presentation of examples~often calledon-line, incre-
mental, or sequentiallearning@2–4#! where the examples are
used sequentially inducing a single change in the network
~being discarded after that!. Besides its biological appeal, it
is a very cheap computational procedure since no memory
space is needed for storing the old examples, nor is time
expensive retraining required. On-line learning is also the
natural scenario for changing environments where old ex-
amples may no longer be representative of the actual rule
@5,6# and for selection of examples~learning by queries!
strategies where each new example is chosen sequentially
depending on the present state of the network@2,7,1#.

Surprisingly, it leads to generalization performances com-
parable to those obtained by the conventional minimization
of global cost functions defined over all examples~off-line
learning! @7#. The on-line generalization error for randomly
chosen examples decays asymptotically with the same power
of ap5P/Np ~the number of examplesP per adjustable pa-
rametersNp of the perceptron! as for off-line learning, the
lower bound for this error being only twice the off-line
Bayesian boundeg

(p)(ap→`)'0.442/ap in the perceptron
@8#.

Off-line learning has been extensively studied with meth-
ods of equilibrium statistical mechanics, mainly through
Gardner coupling space analysis based on the replica formal-
ism @1#. It is interesting to compare these results with those
for on-line learning, especially for the case of multilayer nets

where the statistical mechanics calculations are more in-
volved.

Indeed, on-line learning has been extended recently to
multilayer nets@9,10,4,11–13#. Here we are interested in the
determination of theoptimal performanceachievable by on-
line learning when applied to a committee machine. The op-
timal generalization performance in a tree committee ma-
chine trained on-line with anonlocal algorithm has been
studied in @10#. Here we introduce an optimallocal algo-
rithm and we show that this problem is nicely related to the
case of a single-layer perceptron learning from examples
with noisy data.

The paper is organized as follows. In Sec. II the on-line
learning scenario is described and a general prescription for
calculating on-line optimal performances is given. The opti-
mal performance for a perceptron learning from corrupted
examples is determined in Sec. III, as well as the perfor-
mance of the simple Hebb algorithm. Section IV contains the
analysis of the optimal local learning algorithm for a tree
committee machine withK hidden units; the relationship be-
tween the two problems is discussed in this section. The
strategy of learning by queries in both problems is consid-
ered in Sec. V. Our conclusions are summarized in Sec. VI.

II. ON-LINE LEARNING IN NEURAL NETWORKS

A. Definitions

We studysupervised learningof an unknown mapping
M :I→O of an Np-dimensional input spaceI into single
output spaceO by using only the information from a set of
input-output examples. Thetraining set L5$(Sm,jm)%
(m51, . . . ,P) is an ordered list ofP examples, i.e., pairs of
input vectorsSm5$S1

m , . . . ,SNp
m % with the corresponding

output signalsjm. Average over the training examples will
be referred to as an integration over a measurednL .

For simplicity we will describe the formalism for a single
perceptron which, whenever necessary, must be regarded to
be a branch perceptron of a nonoverlapping or tree commit-
tee machine~TCM!. Quantities labeled by a superscript (p)
refer specifically to the perceptron, while the results for the
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committee machine are denoted by~CM!. The examples
used by the perceptron with adaptive weightsJPRNp ~often
called thestudentor hypothesis! are generated by another
network with the same architecture but unknown weightsB
PRNp ~the teacheror rule!. This corresponds to arealizable
task, which means that the rule to be inferred lies within the
hypothesis space so that some proximity measure in this
space can be defined. As usual the relevant measure is the
averagerule-hypothesis overlap

r5KK J•BJB L
N

L
L

, ~1!

whereJ5uJu5AJ•J, B5uBu5AB•B, ^ &N is the average
over the distribution of networks produced by the algorithm,
and ^ &L is the average over the possible training sets. It is
possible to show that this quantity is self-averaging in the
thermodynamic limitNp→`.

Two general classes of learning behavior appear, depend-
ing on whether the transfer function of the neurons is invert-
ible or not. In the former case we have, for example, the
linear neurong(x)5x and the graded response neuron
g(x)5tanh(x). In the last case we have the Boolean neuron
g(x)5sgn(x) where the binary output conveys only partial
information about the neuron local field, leading to a quali-
tatively different learning behavior. On-line learning has
been studied both in the invertible@4,11,13# and in the non-
invertible @3,7,10,14# cases. Although only machines with
Boolean units will be studied in this work, we will show how
the optimal performance can be obtained from a common
prescription for both types of units.

The local postsynaptic fields in the teacher and student
nets are defined as

bm[B•Sm/B, hm[J•Sm/J, ~2!

respectively. From the noise free rule response
sB

m[sgn(bm), the output dataj
m are generated using a con-

ditional distributionP(jusB).
In this work we will restrict ourselves to the study of the

situation where the teacher output is corrupted by noise, that
is,

P~jusB!5S 12
e

2D d~j,sB!1
e

2
d~j,2sB!, ~3!

whered is the Kronecker delta. The quantitye ~twice the
probability of flipping the noise free responsesB) will be
referred to as the noise level in the teacher output.

B. Performance measures

Three different relevant performance measures can be de-
fined. Thetraining or classification errormeasures the prob-
ability of a misclassification over the training set,

ec
~p![

1

aN(
m51

aN

Q~2jmsJ
m!. ~4!

Contrasting with off-line learning, on-line algorithms with
single presentation of examples always produce networks

with nonzero classification error. This represents no problem
concerning the generalization properties and perhaps consti-
tutes an advantage in the case of noisy examples by avoiding
overfitting. We observe that this quantity is measurable from
simulations but up to now there are no analytical results for
the on-line classification error except for the simple Hebb
rule @15#.

The second measure is thegeneralization error, which
measures the probability of misclassification of anoise free
example chosen with a uniform test distributiondnT (S),

eg
~p![E dnT ~S!Q„2sB~S!sJ~S!…5

1

p
arccosr. ~5!

Although this error is perhaps inaccessible~if we only can
obtain noisy outputsj as test examples! it has theoretical
importance since it measures how successful the hypothesis
has been in approximating the rule.

A third measure, which we will callprediction error, is
the probability of misclassification of a noisy example drawn
from the same distribution used during learning,

ep
~p![E dnL~S,j!Q„2jsJ~S!…. ~6!

If this distribution is uniform, withP(jusB) given by Eq.
~3!, we have

ep
~p!5~12e!

1

p
arccosr1

e

2
5~12e!eg

~p!1
e

2
. ~7!

Thus in the presence of noise the prediction error is nonzero
even if we have a perfect matchJ5B. This prediction error
is measurable but, sincee is unknown, it does not give a
direct estimate of the success of the modeling task~how near
J is to B). We observe, however, that botheg

(p) andep
(p) are

monotonic decreasing functions of the overlapr, and that
the maximization of this overlap is the primordial task for
the learning procedure.

C. Learning dynamics and the optimization procedure

We will show that upper bounds for the average evolution
of r as a function of the number of examples and noise level
can be calculated for any distribution of examples.

Our starting point is a fairly general learning dynamics
which depends on the two vectors available in the problem
(J andS)

Ji~m!5S 12
V~m!

Np
D Ji~m21!1

1

Np
F~m!Si

m , ~8!

whereF(m) is a function which weights the change induced
in the synaptic vectorJ by a new example. Due to obvious
motivations, we will call it the perceptronmodulation func-
tion. V(m) is a decay parameter which may be used to con-
trol the length of vectorJ.

From Eq.~8! it is possible to obtain in the limitNp→`
differential equations@2,7,5# describing the evolution ofr
and J as a function of the ‘‘continuous time’’ap5m/Np .
These learning equations can be used for the calculation of
the performance of any algorithm:
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dr

dap
5rE dnL

F~m!

J S b~m!

r
2h~m!2

F~m!

2J D , ~9!

dJ

dap
5JE dnLS F2~m!

2J2
1
F~m!h~m!

J
2V~m! D . ~10!

Defining Fopt as the weight function that optimizes
dr/dap , a simple variational calculation leads to

Fopt~m!5
J

r
~^b&buj,h2rh!, ~11!

where^ &buj,h stands for the average overP(bmuj,hm). Note
that, although in this paper we will restrict ourselves to the
case where the examples are random independent identically
distributed variables distributed uniformly the above formal
prescription for the optimal weight function is valid forany
distribution of examples. The only hypothesis is that learning
occurs obeying the initial dynamics~8!.

DefiningW̃[Fopt/J, the evolution equations for the opti-
mal algorithm become

dr

dap
5

r

2
^W̃2&h,j , ~12!

dJ

dap
5JF12 ^W̃2&h,j2^h2&h1

1

r
^hb&h,b2V G . ~13!

Again, no assumptions on the distribution of examples
P(b,h) were made. Equations~12! and ~13! are thus also
valid for anydistribution of examples. It follows that, when-
ever the distribution of examples satisfies the condition

r^h2&h5^hb&h,b , ~14!

and learning is done unconstrained (V50), the evolutions of
r andJ are simply related,

1

r

dr

dap
5
1

J

dJ

dap
, ~15!

as can be seen by inserting Eq.~14! in Eq. ~13!. This leads to
the remarkable property

J~ap!5c3r~ap!, ~16!

wherec is a constant which can be self-consistently set equal
to unity. In particular, Eq.~14! holds for the uniform distri-
bution of examples@see Eq.~A2! in the Appendix# and for
the selected examples used in the ‘‘learning by queries’’
strategy.

III. PERCEPTRON LEARNING FROM NOISY DATA

A. The optimal algorithm

In the Appendix we show that the optimal modulation
function term can be easily calculated as

FoptSi
m52Jl2

]

] Ĵi
lnP~jmuhm!, ~17!

whereĴi[Ji /uJu and

l[
A12r2

r
. ~18!

This prescription for calculating the optimal modulation can
be used both for Boolean or graded response units and other
example distributions@16#.

We now give an explicit expression for the optimal
weight function for the particular case studied here, where
the examples are independent identical uniformly distributed
random variables and noise corrupts the teacher output ac-
cording to~3!. Using

P~juh!5(
sB

P~jusB ,h!P~sBuh!5(
sB

P~jusB!P~sBuh!

~19!

and the result

P~sBuh!5HS 2sBh

l D , ~20!

one easily obtains~see Appendix!

P~juh!5
e

2
1~12e!HS 2jh

l D , ~21!

where

H~x!5E
x

`

Dt, Dt[
1

A2p
e2t2/2dt.

The optimal weight function, following the prescription of
Eq. ~17!, is then

Fopt~m!5Jl
~12e!

A2p

e2hm
2 /2l2

@e/21~12e!H~2jmhm /l!#
jm .

~22!

The optimization procedure has determined not only the
form of the modulation function, but most importantly the
variables upon which it depends. In particular, note that the
presence ofj means that the learning algorithm amounts to a
Hebbian-like term (jS) modulated by a function ofl and
h.

The optimal weight function~22! presents some interest-
ing properties~see Fig. 1!. Its main characteristics are the
dependence on~1! the current performance, through the fac-
tor l5A12r2/r; ~2! the ‘‘surprise’’ presented by a new
example, as measured by the pretraining stabilityDm
[jmJ(m21)•Sm/J; and ~3! the noise levele present in the
environment.

Thus any practical algorithm which intends to approxi-
mate the theoretical optimal performance must approximate
these characteristics of the optimal modulation function. In
particular, the dependence on the unknown quantitiesl and
e must be replaced by a dependence on measurable ones.
This will be discussed at the end of this section, and in the
meantime we will focus our attention on the interesting fea-
tures presented byFopt.
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At r'0 the weight functionFopt is a constant, i.e., the
student perceptron starts learning in a pure Hebbian way,
while at later timesFopt acquires a highly structured shape,
as can be seen in Fig. 1. The modulation is not static but
performance dependent, varying along the learning process.

The dependence on the ‘‘surprise’’ content of a new ex-
ample can be seen by considering the pretraining stability,
defined byD[hj. WhenD.0, the student output equals the
teacher noisy final output, i.e., the student is correctly pre-
dicting the example. In this situation the weight function is
small, indicating that no major change in the synaptic cou-
plings should be made. But forD,0 the student network is
mispredicting the example, and thus the weight function
strongly increases with increasinguDu, i.e., the surprise of
being wrong makes the student attach importance to the ex-
ample.

The presence of noise, however, changes this scenario. If
D happens to be very negative, the weight function de-
creases, since, for such largeuhu, the misprediction is prob-
ably due to noise in the teacher answer. This is a very nice
analytical result which provides a theoretical justification for
the heuristical procedure, developed for this same problem,
of an exponentially decaying term for examples with very
negative stabilities~‘‘thermal perceptron’’ @17#! and the
stubborn strategy of ignoring, with some probability, highly
deviant data@18#. Indeed, algorithms~e.g., relaxation! with-
out this weight decrease for discrepant data fail to achieve
theap

21 power law foreg
(p) @18#.

The dependence on the ‘‘surprise’’ and noise level can be
seen independently of the learning stage in Fig. 2, where the
rescaled weight functionFoptj/Jl is plotted against the res-
caled stabilityD/l for several values ofe.

From Eqs.~12! and ~13! the evolution ofr andJ is ob-
tained:

dr

dap
5

~12r2!3/2

r2
~12e!2

2p E Dx e2x2/2r2

e/21~12e!H~x!
, ~23!

dJ

dap
5J

~12r2!3/2

r3
~12e!2

2p E Dx e2x2/2r2

e/21~12e!H~x!
2VJ.

~24!

Since ther equation is not coupled to theJ equation, the
evolution of r(ap) is obtained by a simple numerical inte-
gration. The asymptotical behavior forr→1 is described by

dr

dap
.

~12r2!3/2

r2
I ~e!

2p
, ~25!

where

I ~e!5~12e!2E Dx e2x2/2

e/21~12e!H~x!
. ~26!

A simple power counting on Eq.~25! shows that

r~ap!.12
2p2

I 2~e!

1

ap
2 , ~27!

so that

eg
~p!.

2

I ~e!
ap

21 ~28!

FIG. 1. Norm of the modulation function
jFopt against stabilityD for several values ofr
and e. Note the qualitatively different behavior
for e50, which can also be observed in Fig. 2.

FIG. 2. Rescaled weight functionjF/(Jl) against rescaled sta-
bility D/l. From top to bottom,e50, 0.1, . . . , 0.9. The dashed
straight line corresponds to the maxima of the functions.
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for largeap . The above equation shows that for anyeÞ1
asymptotical perfect generalization (eg

(p)→0) is possible,
and the error decays always with the same power law
(ap

21). For e.1, I (e) goes to zero quadratically,

I ~e! .
e→1

A2~12e!2. ~29!

The above result will be important for the analysis of the tree
committee machine, in the next section.

We stress that these results represent lower bounds to the
on-line performance of the perceptron in the specific scenario
described. But in a real situation, one can hardly access the
‘‘noise level’’ of a system, while our optimal weight func-
tion explicitly makes use ofe. An on-line noise estimator
through which this problem is overcome has been proposed
in @14#.

The optimal function also depends on the inaccessible
overlap r. There are several ways out of this problem. A
simple way for stationary rules is to take advantage of prop-
ertyJ(ap)5r(ap) ~16! presented by unconstrained learning.
The value of the perceptron normJ is a measurable quantity
and the optimal function in this case reads

Fopt5A12J2
~12e!

A2p

expF2
1

2
h2J2/~12J2!G

@e/21~12e!H~2jhJ/A12J2!#
j.

~30!

The simulations presented in this paper have used this form
for Fopt. In the case of time-dependent rules these solutions
do not work, but for those cases a method for on-line esti-
mation ofl has been developed in@5#.

B. The Hebb algorithm

The Hebb algorithm, initially studied by Vallet@15# for
the perceptron, has recently been applied in the tree commit-
tee machine with three hidden units@10#. We now study the
performance of a perceptron learning with the Hebbian algo-
rithm in the presence of output noise. This result, through the
equivalence property to be presented later, enables a gener-
alization of our results to TCMs with anyK.

Instead of looking directly at the pure Hebb algorithm
(F5j) we allow for a possibly varying function of the learn-
ing stage

FH5W~ap!j. ~31!

Inserting this weight function in the evolution equation for
r one obtains

dr

dap
5~12e!A2

p
~12r2!

W~ap!

J
2r

W2~ap!

2J
. ~32!

The weight functionW* that optimizesdr/dap is then

W*5JA2

p

~12r2!

r
~12e!, ~33!

in which case the evolution ofr can be easily seen to be
given by

dr

dap
5
1

p
~12e!2

~12r2!2

r
. ~34!

For the initial conditionr(0)50 we have then

r~ap!5F11
p

2~12e!2ap
G21/2

. ~35!

Note that again the optimization procedure left ther
equation uncoupled from theJ equation. It is very interesting
that the obtained weight function~33! corresponds to the
usual Hebbian algorithm (F5j). To see this first calculate
the J evolution ~10! for W5W* :

dJ

dap
5JF 1p ~12e!2

~12r2!2

r2
1
2

p
~12e!2~12r2!2V G .

~36!

From Eq.~33! one obtains

dW*

dap
5~12e!A2

p F12r2

r

dJ

dap
2S 21

12r2

r2 D J dr

dap
G .
~37!

Equations~34! and ~36! lead then to

dW*

dap
52VW* , ~38!

meaning that ifV50 the optimal algorithm is simply the
Hebb rule (W*5 const!. However, ifV is a nonzero con-
stant, then the optimal algorithm prescribes an exponentially
decaying weightW!5exp(2Vap) to the newly presented ex-
ample.

The generalization error asymptotic behavior for large
ap can be obtained from Eqs.~35! and ~5!:

eg
~p!.

1

A2pu12eu
ap

21/2. ~39!

Again it is worth pointing out that no matter how much noise
corrupts the teacher output, the Hebbian algorithm will al-
ways give anap

21/2 decay for the generalization error~un-
less, obviously, fore51 where no learning can occur!.

IV. LOCAL LEARNING FROM NOISELESS DATA
IN THE TREE COMMITTEE MACHINE

In this section we study the tree committee machine. The
special case in which there are only three hidden units has
already been studied in@10#, where it was shown that the
optimal algorithm for on-line learning requires nonlocal in-
formation. That means that the optimal weight function for
some branch perceptron depends on information of the other
branches. We investigate now to what amount such nonlo-
cality is important, what the optimallocal procedure is, and
how this problem is connected to learning in the perceptron
from noisy data.
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A. The TCM model

The K tree committee machine we deal with is a set of
K independent Boolean perceptrons~branches! with Np
5NCM /K input units each. They do not share any input com-
ponent. The notation we use is such that everyNCM-dimen-
sional vectorVW can be thought of asK Np-dimensional
branch vectors, i.e.,VW 5(V1 , . . . ,VK).

We consider the case where a student network learns from
a learning set provided by a teacher network, and we assume
they have the same architecture. The learning set is a set of
P pairs $(SW m,SB

m)% (m51, . . . ,P) whereSW 5(S1 , . . . ,SK)
with Skj561, k51, . . . ,K, j51, . . . ,Np , and SB is the
teacher output@see Eq.~41! below#. The synaptic weights of
the teacher are denoted byBW 5(B1 , . . . ,BK).

Given an input branch vectorSk each branch perceptron
Bk of the teacher net gives a partial output

sBk5sgn~bk!, bk[Bk•Sk /Bk . ~40!

The normalization( j51
Np Bk j

2 [Bk
251 can be imposed without

loss of generality.
The set$sBk% ~the so called ‘‘internal representation’’ of

SW in the teacher net! is inaccessible for the student net. The
only quantity it can access~besides the input vectorSW ) is the
teacher’s final output, which is made up from the internal
representation:

SB5sgn~B!, B[(
k51

K

sBk . ~41!

The student net is defined by a vector of real connectionsJW

and upon presentation of an input vectorSW , it gives an output

SJ5sgn~H!, H[(
k51

K

sJk , ~42!

where

sJk5sgn~hk!, hk[Jk•Sk /Jk . ~43!

As in the perceptron case, the aim of training the student
TCM is to obtainJW , using information from the learning set,
such thatP(SJ5SB), upon the presentation of a random
input vector uncorrelated with the learning set, is maximized.
Mato and Parga@19# have calculated the generalization error
eg
(CM) for a TCM with K hidden units as a function of the
overlapsrk[Jk •Bk /JkBk , whereJk5uJku. In the situation
where theK overlaps have the same value, i.e.,rk5r,
k51, . . . ,K, the generalization error is given@19# by

eg
~CM!~r!5

1

2
2

1

2p2 (
n50,2,4,...

K21 SKn D FBSK2n

2
,
n11

2 D G2
3~122eg

~p!!K2n, ~44!

where eg
(p) is the generalization error that each student

branch perceptron would present with respect to the corre-
sponding teacher branch perceptron, andB is Euler’s beta
function. In theK→` limit, it can be shown that

eg
~CM!~$rk%! 5

~rk5r! 1
p arccosF 2parcsin~r!G . ~45!

Since we are interested in maximizing the rate at which
the generalization error decreases with the presentation of
examples, what Eq. ~44! suggests is to maximize
drk /daCM for k51, . . . ,K, where nowaCM stands for the
number of presented examples per machine connection,

aCM5
m

NCM
5

ap

K
. ~46!

Maximizing deg
(CM)/daCM implies the maximization of

deg
(p)/dap , turning the TCM on-line learning problem into a

simple perceptron one. This property is due to the fact that
the receptive fields are nonoverlapping. But on-line learning
with the simple perceptron requires knowledge of the teacher
perceptron output, which in this case belongs to the inacces-
sible internal representation of a given example. The central
issue about the equivalence between on-line learning in the
committee machine and in perceptrons with noisy data is that
for uniform distributions of examplesthe final machine out-
put SB can be viewed as a corrupted version of the inacces-
sible sBk , which is necessary for learning at each student
branch perceptronJk . One can then use the results of Sec. III
if the effective ‘‘noise level’’e is known. Clearly it depends
on the size of the machine and one expectse(K) to be a
monotonic increasing function ofK.

B. Local learning in TCMs

We now discuss the equivalence property sketched above
in detail. A learning algorithm in thekth TCM branch is said
to be local when, besides the teacher outputSB , it makes use
only of a variableF k which does not depend on the fields
$hl% lÞk of the other branches.F k is more generally defined
by some conditional probability distribution

P~F ku$hl%,$bl%! ——→
LOCAL

P~F kuhk! ~47!

and may contain only partial information abouthk . We also
define a variableG k through its conditional probability dis-
tribution

P~G ku$hl%,$bl%! ——→
LOCAL

P~G kuhk!. ~48!

G k is a random variable whose informational value about the
receptive fieldhk is complementary to that ofF k . For ex-
ample, the optimal algorithm uses all the information con-
tained in the local field,F 5h andG51; the Hebb algo-
rithm hasF 51 andG5h; and the Rosenblatt perceptron
algorithm hasF 5sJ andG5uhu.

For a given set$F k ,G k%, the probability distribution
P(bk ,G k ,SB ,F k) is the relevant quantity to be calculated.
From it, the determination of an optimized algorithm and the
calculation of the corresponding performance are straightfor-
ward procedures. Starting from the Gaussian distribution
P0 given by Eq.~A2!, its calculation follows as
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P~bk ,G k ,SB ,F k!

5P0~bk!E S )
lÞk

P0~bl ,hl !dbl dhl D P0~hkubk!dhk

3dS SB ,sgnF(
l51

K

sgn~bl !G D P~F k ,G kuhk!. ~49!

Integrals over$hl% lÞk are trivial and the resulting expression
can be factorized in a simple way:

P~bk ,G k ,SB ,F k!

5P0~bk!E S )
lÞk

P0~bl !dbl D dS SB ,sgnF(
l51

K

sgn~bl !G D
3E P0~hkubk!dhkP~F k ,G kuhk!

5P0~bk!P~SBubk!P~F k ,G kubk!. ~50!

Similarly, in the perceptron learning from noisy data de-
scribed in the preceding section the probability distribution
P(b,G ,j,F ) is the relevant quantity. SinceP(jub,F ,G )
5P(jub), it follows that

P~b,G ,j,F !5P0~b!P~jub!P~F ,G ub!. ~51!

So, the probability distributions for both problems factorize
in a very similar manner. It remains to show thatP(SBubk)
has the same structure asP(jub). We can write

P~jub!5P„j52sgn~b!…

1@122P„j52sgn~b!…#Q„jsgn~b!…, ~52!

whereP„j52sgn(b)…5e/2. From Eq.~50!, we see that for
uniformly distributed examples@in which case P(sBk
561)51/2#, we can write

P~SBubk!5P„SB52sgn~bk!…

1@122P„SB52 sgn~bk!…#Q„SB sgn~bk!…,

~53!

whereP„SB52sgn(bk)… is also a constant which depends
onK. Therefore, for a TCM withK hidden units, there is an
‘‘effective noise level’’ e(K) such that P(SBubk ,K)
5P„jub,e(K)…. The study of a local algorithm in the TCM
defined by some modulation functionFk(SB ,F k) is equiva-
lent to the study of the same algorithm in a perceptron with
examples corrupted by some noise levele(K).

For this equivalence to hold it is fundamental that the
algorithm be fullylocal, i.e., the weight function for a given
branch perceptronk does not make use of information from
the other branch students’ internal fields$hl% lÞk . These in-
ternal fields are correlated with the teacher branch perceptron
fields $bl% lÞk @see Eq.~A2!#, and thus nonlocal rules allow
us to infer~in some sense! what the internal representation of
the teacher net is. This detailed information about the rela-
tion betweenSB and $bl% has no equivalent in the simpler
noisy perceptron situation.

C. The equivalent noise levele„K…

The quantity in the TCM problem which corresponds to
j in the simple perceptron problem isSB . To obtain the
equivalent noise level e we must then calculate
PK(sBk5SB)[P(sBk5SBuK), which we now proceed to
do. Defining

B̃k[(
lÞk

sBl , ~54!

which is the contribution toB of all the hidden units except
thekth one, and recalling that the sum hasK21 terms~and
thus is an even number!, it is easy to see that

sBkB̃k.0 ⇒ SB5sBk ,

sBkB̃k50 ⇒ SB5sBk ,

sBkB̃k,0 ⇒ SB52sBk , ~55!

so that

PK~sBkÞSB!5PK~sBkB̃k,0!. ~56!

In the uniform distribution of examples studied here, hid-
den units are set to61 with equal probabilities, i.e.,
P(sBk)51/2, so thatPK(sBkB̃k,0)5PK(B̃k,0). In this
case, a simple counting leads to

PK~B̃k!5S 12D
K21 ~K21!!

SK211B̃k

2 D ! SK212B̃k

2 D ! .
~57!

As expected,PK(B̃k)5PK(2B̃k), so that

PK~B̃k.0!5PK~B̃k,0!5
1

2
@12PK~B̃k50!#. ~58!

Finally,

PK~sBkÞSB!5
1

2
@12D~K !#, ~59!

where

D~K ![PK~B̃k50!5S 12D
K21 ~K21!!

F SK21

2 D ! G2 ~60!

is the probability that thekth branch decides the machine
output. Since the noise levele was defined in Sec. III as
twice the probability that the original outputsBk is flipped,
the final expression of the ‘‘equivalent noise level’’ is

e~K !512D~K !512S 12D
K21 ~K21!!

F SK21

2 D ! G2 . ~61!

Thus the optimal local on-line learning for a TCM has
been solved for any number of branchesK. The evolution of
the branch overlaps is calculated from Eq.~23! using the
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effective noise levele(K). This overlap gives the branch
erroreg

(p)(ap) which must be inserted in Eq.~44! for obtain-
ing the learning curveeg

(CM)(aCM). Observe that in this pro-
cess the changeap5Ka CM should be done.

D. Asymptotic behavior

For finiteK, I „e(K)… is nonzero@see Eq.~26!#, implying
anaCM

21 decay for the generalization error per branch percep-
tron eg

(p) , according to Eqs.~28! and~46!. According to Eq.
~44!, the asymptotic generalization error of the machine be-
haves like

eg
~CM!.C~K !eg

~p! , ~62!

i.e., a constant~which grows withK) times the asymptotic
generalization error per branch perceptron~e.g., forK53 we
haveeg

(CM).3/2eg
(p) , asymptotically!. This happens because

the sum on Eq.~44! has a finite number of terms, so that the
term of order@eg

(p)#1 dominates. Then, the optimal local al-
gorithm always leads to anaCM

21 decay for the generalization
error, as long asK remains finite. In Table I the noise level
e and its corresponding integralI (e) are shown for several
values ofK.

A subtle point concerns the meaning ofK→` and the
onset of the asymptotical behavior. Due to the nonuniform
convergence of Eq.~44! asK→`, at r→1 there is a cross-
over in behavior ofeg

(CM)(r). For finite but largeK two
regimes can be detected. For intermediate values ofaCM , the
error decays asaCM

21/2, while for sufficiently largeaCM it
crosses over toaCM

21 . The crossover occurs for increasingly
larger values ofaCM asK→`. Thus, in the limit of infinite
K theaCM

21 regime cannot be reached~see Fig. 3!.
The asymptotic behavior ofD(K), for largeK, is

D~K !512e~K !.A2

p

1

AK
, ~63!

so thate(K)→1 in this limit, as expected. From Eq.~29! it
follows that

I „e~K !… .
K→` 2A2

p
1
K , ~64!

so that theeg
(p) asymptotic decay can be obtained from Eqs.

~28! and ~64!:

eg
~p!.

p

A2
K

ap
5

p

A2
aCM

21. ~65!

The above equation shows that if the number of presented
examples is proportional to the number of connections in
each branch perceptron~that is, finiteap), no learning can
occur for infinitely many hidden units. The proper scaling in
this case happens to be the number of presented examples
per machine connection (aCM). Since the noise level is close
to unity, the modulation function prevents the occurrence of
major synaptic changes in a broader region of theD axis.
This could be interpreted as if each branch perceptron
learned in the average only once everyK examples. Equa-
tions ~45! and ~65! lead then to an asymptotic (aCM→`)
generalization error

eg
~CM!.

2

p
Aeg~p!.

23/4

Ap
aCM

21/2. ~66!

Simulations were performed to check the equivalence de-
scribed, and results are shown in Fig. 4. While using the
optimal weight~22!, the inaccessible overlapr was replaced
by the normJ as measured during run time, and the agree-
ment between theoretical calculations and simulations shows
that fluctuations onJ are irrelevant. Note that while symbols
refer to simulations on TCMs~with K from one to 11!, solid
lines represent the numerical integration of Eq.~23! for the
correspondinge(K), confirming the equivalence property.

A similar analysis can be applied to the simple Hebb
learning. From Eqs.~39! and ~62! it follows that for finite
K the machine generalization error has anaCM

21/2 asymptotic
decay. For largeK, one finds again that the number of ex-
amples presented must be proportional to the number of in-
put units of the committee machine for learning to occur.
Using result~63! it follows that

TABLE I. Noise levele and the corresponding asymptotic inte-
gral I (e) as functions ofK.

K e I (e)

1 0 2.264
3 1/250.5 0.375
5 5/850.625 0.205
7 11/1650.6875 0.141
9 93/128.0.727 0.108
11 0.754 0.087
13 0.774 0.073
15 0.790 0.063
17 0.803 0.055
19 0.814 0.049
21 0.824 0.044

FIG. 3. Nonuniform convergence ofeg
(CM)(r) as K→`. For

large but finiteK, dln(eg
(CM))/dln(12r) approaches 1/4 for small

values of 12r. Yet, for r sufficiently close to 1, the expression
converges to 1/2. From top to bottom,K51, 3, 5, 7, 9, 11, 21, 31,
41, 51, 61, 71, 81, 91, 101, 111, 121.
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eg
~p!.

1

2
AK

ap
5
1

2
aCM

21/2. ~67!

In the K→` limit, eg
(CM) is given by Eq.~45!. Nearr51,

result ~67! can be used, leading to

eg
~CM!.

A2
p

aCM
21/4. ~68!

Simulations for the simple Hebb algorithm on the TCM can
be seen in Fig. 5.

E. Discussion

We stress that the ‘‘optimal algorithm’’ with the specific
form Fopt presented here is optimal only for the example
distribution and the type of noise assumed. There is no opti-
mal ‘‘panacea’’ algorithm, only perhaps an optimal Bayesian
prescription to construct algorithms which depend on prior
information ~see Appendix!. It is interesting, however, to
compare certain traits of the optimal algorithm~in the belief
that they may be generic or generalizable characteristics!

with the heuristical algorithms proposed for these machines
~TCMs with Boolean units!, such as Mitchison and Durbin’s
least action procedure@20# and its variants.

Learning a TCM.The modulation functionFopt produces
major synaptic changes in the hidden units which have nega-
tive but small stabilitiesD. The least action algorithm fol-
lows a procedure which crudely resembles the optimal func-
tion: only the synapses of the unit with lowest~in modulo!
negative stability are updated, so greatly discrepant internal
representations in some branches do not produce synaptic
changes.

The decreasing ofFopt along the learning process pro-
duced by the prefactorl is also approximated by the con-
ventional algorithms by using a decreasing learning step. We
think that the form of the optimal local algorithm gives some
theoretical insight for the success of these standard proce-
dures.

More specifically, suppose that we make use of the least
action procedure with an Adatron~relaxation! algorithm to
change the individual branch perceptrons of a committee. It
is known that standard Adatron does not perform well for
single-layer perceptrons with this type of output noise@18#
and, due to the equivalence property, we may ask whether it
also presents a bad performance when used in committees.
From the insight furnished by the optimal algorithm, we may
expect the TCM student to succeed in learning the rule, since
least action in some sense mimics the modulated cutoff, an
essential ingredient for learning ‘‘noisy’’ data. The least ac-
tion procedure is necessary to overcome the relaxation algo-
rithm handicap.

However, if some algorithm similar toFopt is used~with a
‘‘cutoff’’ for discrepant data! then the ‘‘principle of least
action’’ is no longer necessary: all the branch perceptrons
can be simultaneously updated. The optimalnonlocalalgo-
rithm is even more sophisticated: in some circumstances the
lowest stability branch is not the one that gets the largest
correction@10#.

Learning from noisy examples.The form ofFopt suggests
how to construct an algorithm robust to this type of output
noise and its learning curve gives lower bounds for the per-
formance of the on-line heuristical algorithms. Instead of a
probabilistic cutoff@18#, however, the optimal function pre-
scribes a time-dependent continuous modulation of the
weight given for the discrepant data. This agrees well with
some proposals appearing in the ‘‘robust statistics’’ literature
@21#.

Since each environment~with well defined type and level
of noise, distribution of examples, etc.! determines its spe-
cialized optimal modulation function, we must address the
issue of algorithm robustness. Perhaps the heuristical algo-
rithms~or even the simple Hebb rule!, being less specialized,
turn out to be more robust when changing the learning situ-
ation. The tradeoff specialization-robustness issue is impor-
tant and is currently under study.

V. LEARNING BY QUERIES

Kinzel and Ruja´n @2# pointed out that by appropriately
choosing the new examples, with a distribution
P(h)5d(h), the generalization error of a single-layer per-
ceptron could be reduced from an asymptotic decay of

FIG. 4. Average ofeg
(p) taken overK branches againstap , for

the optimal algorithm.Np is the number of units per perceptron and
n is the number of runs, for eachK. See text for details.

FIG. 5. Average ofeg
(p) taken overK branches againstap , for

the Hebbian algorithm.Np is the number of units per perceptron
andn is the number of runs, for eachK.
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0.399ap
21/2 to 0.199ap

21/2. In @7# it was shown that if the
modulation function was permitted to evolve along the learn-
ing process, a vast qualitative improvement could be
achieved, with a resulting exponential decay. We extend this
result now in two directions. We first show that the exponen-
tial decay of the perceptron generalization error is preserved
even in the presence of the particular type of noise studied
here and secondly that this results in an exponentially decay-
ing error for the TCM, according to the equivalence dis-
cussed in the preceding section. For largeK this decay is
independent ofK.

In obtaining Eq.~23! we made explicit use of the distri-
bution P0(h). For an arbitrary distribution functionP(h)
@for which the conditional distribution functionP(buh) is
still P0(buh)# the evolution ofr is given by

dr

dap
5

~12r2!

r

~12e!2

4p E dhP~h!F e2h2/l2

e/21~12e!H~2h/l!

1
e2h2/l2

e/21~12e!H~h/l!
G . ~69!

Defining the term between square brackets asf (h),
dr/dap is maximized if the distribution ofh is chosen to be
P(h)5d(h2h0), whereh0 is the maximum off . The solu-
tion of d f(h0)/dh050 is easily seen to beh050, leading
then to the optimized distributionPopt(h)5d(h), a generali-
zation of the results of Ref.@7#. InsertingPopt(h) into Eq.
~69!, one obtains

dr

dap
5

~12e!2

p

~12r2!

r
, ~70!

which for the initial conditionr(0)50 has the solution

r5$12exp@22~12e!2ap /p#%1/2. ~71!

Whenap→`, the corresponding branch errors are described
by

eg
~p!.

1

p
exp@2~12e!2ap /p#. ~72!

This means that for finiteK the committee machine error
decays exponentially withaCM , with aK-dependent prefac-
tor. For largeK, results~63! and~72! can be used, leading to
the branch error

eg
~p!.

1

p
exp~22aCM /p

2!, ~73!

which is independent ofK. In theK→` limit we have

eg
~CM!.

2

p3/2exp~2aCM /p
2!. ~74!

To implement this strategy it is necessary to select input
vectorsS orthogonal toJ, which may be a costly search. We
observe that the exponential decay can be achieved by a less
rigorous choice ofS, say, vectors which haveh5cl. In this
case we obtain from Eq.~69!

dr

dap
5

~12e!2

p

~12r2!

r
I ~c!, ~75!

I ~c!5
e2c2/2

4 F 1

e/21~12e!H~2c!
1

1

e/21~12e!H~c!G ,
~76!

which also leads to an exponential decay for the generaliza-
tion error with a prefactorI (c),1 in front of aCM in ex-
pressions~74! and ~73!.

VI. SUMMARY AND CONCLUSIONS

The variational approach to the determination of optimal
algorithms has already been applied to several machines with
different architectures: linear@16# and Boolean perceptrons
@7#, parity @22#, and committee machines with Boolean units
@10#. Although this approach has been mainly used in con-
junction with on-line learning, it can also be applied to off-
line learning@23,24#.

The main idea behind this approach is that given a certain
amount of information about the learning conditions, such as
the distribution of examples or the type and level of noise,
optimal learning algorithms can be theoretically derived in-
stead of being proposed only fromad hoc and heuristical
considerations. It may be argued though, that in a real learn-
ing problem this type of information can only be obtained
approximately and possibly byad hocmethods. We never-
theless feel that considerable theoretical insight can be
achieved by studying exactly solvable models under restric-
tive conditions, an usual methodology in the statistical phys-
ics literature. The interpretation of the motive for the success
of the least action procedure is one of these insights.

The study of increasingly richer architectures should be
undertaken based on the hope that some properties will re-
main valid, being more a reflection of generic learning be-
havior rather than lucky outcomes due to the restricted set of
architectures examined. One general result which has
emerged is the form of the optimal cost function,Eopt
52l2lnP(ju$hk%), which is valid for all learning situations
and all machines studied so far. This is a maximum-
likelihood method, but our proposal is a more general Baye-
sian cost function which reduces to the above form when we
have a uniform priorP(J) ~see Appendix!. The connection
with Bayesian inference ideas deserves further clarification.

We have presented lower bounds on generalization errors.
That these performances might be attained hinges on the
knowledge of the noise level and example distribution. We
have shown that the determination of noise level in the per-
ceptron translates into architecture determination in the com-
mittee machine. Thea priori knowledge of an architecture
amounts to the determination of confidence levels on the data
used for training and thus any restriction in the determination
of one should apply to the other. Therefore methods to de-
termine the noise levele, such as the one developed by Biehl
et al. @14#, are important since they may also suggest meth-
ods for estimation of the teacher architecture complexity in
other problems. How these algorithms fare in the absence of
such detailed or precise information will be the subject of
future work.

The equivalence between noisy perceptron and TCM
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leads to the possibility of studying on-line learning in the
limit of infinite K. Since the limit of infiniteNp was taken
before the largeK limit, it must be stressed that our results
should be good approximations for finiteNCM andK only
when NCM@K. We have found a crossover from anaCM

21

behavior for finiteK to an aCM
21/2 one for infiniteK. This

crossover is due to a nonuniform convergence of the series
that defines the generalization error atr equal to one.

Although we have not addressed the issue of nonstation-
ary rules they could be included in the same way as in@6,5#.
The study of the learning by queries strategy is easily done.
Optimization leads to an exponentially fast decaying error
even when examples are not chosen at the decision border
hÞ0.

Although local algorithms for TCMs work well and have
the nice equivalence with algorithms for the noisy perceptron
problem, the study ofnonlocal algorithms for the general
K TCM does not lose its importance. On the contrary, the
performance difference between local (eg

(CM).2.67/aCM)
and nonlocal (eg

(CM).0.88/aCM) optimal on-line algorithms
in the K53 case@10# signals that nonlocality plays an im-
portant role during learning. Recent results@25# indicate that
the asymptotical resulteg

(CM).0.88/aCM remains valid for
optimal nonlocal on-line learning in generalK TCMs.

Note added:After the main results of this work had been
obtained we received a manuscript from Biehlet al. @14#
which contains some overlapping results about learning in
the perceptron with noise.
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APPENDIX: TRAINING ENERGY FOR THE OPTIMAL
ALGORITHM IN THE CASE OF RANDOM

EXAMPLES

The dynamic evolution may be thought of as a stochastic
gradient descent minimization of some cost functionH(m)
defined in the space of normalized vectorsĴ[J/J,

Ĵi~m!5 Ĵi~m21!2
1

Np

]H

] Ĵi
, ~A1!

where Ĵi[Ji /J is the i th component of the unit vectorĴ.
The total energyH5V1E has two parts, the potential
Vm5 1

2V(m) Ĵ–Ĵ controlling the synaptic vector length and
the training energy Em which depends only on the example
m. We list here the most studied algorithms: Hebb:EH

m

52Dm ; FH(m)5jm; Adaline: EA
m5 1

2(k2Dm)
2; FA(m)

5(k2Dm)j
m; perceptron: EP

m5(k2Dm)Q(k2Dm);
FP(m)5Q(k2Dm)j

m; and relaxation: ER
m

5(k2Dm)
2Q(k2Dm); FR(m)5(k2Dm)Q(k2Dm)j

m;
wherek could be a function ofap .

Consider distributions of input vectors such that the fields
b andh @as defined in~2!# are Gaussian correlated variables
with zero mean and unit variance~if the means are nonzero,
we can work with the normalized fieldsb̂5b2^b& and
ĥ5h2^h&):

P0~b,h!5P0~h!P0~buh!

5
1

A2p
expS 2

h2

2 D 1

A2p~12r2!

3expS 2
~b2rh!2

2~12r2! D . ~A2!

Starting from this probability distribution, we wish to show
that the optimal weight function~11! has a corresponding
training energy

Eopt52l2lnP~juh!, l[
A12r2

r
. ~A3!

The deduction that follows is strictly valid for the uniform
distribution of examples~A2! above, though we have reasons
to believe that Eq.~A3! is a general prescription~see below!.

According to Eqs.~8! and ~A1!, the weight function is
related to theĴ gradient of the energy function. Starting then
from Eq. ~A3!, it follows that

]Eopt

] Ĵi
52

l2

P~juh!

]

] Ĵi
P~juh!

52
l2

P~juh!

]

] Ĵi
E db P~jub!P~buh!, ~A4!

where we have used thatP(jub,h)5P(jub), so that the only
dependence onĴi lies on the student receptive fieldh of
P(buh). Only now must we introduce the specific example
distribution ~A2!. For P(buh)5P0(buh) we have

]

] Ĵi
P0~buh!5

Si
l2 S br 2hDP0~buh!, ~A5!

so that, returning to Eq.~A4!,

]Eopt

] Ĵi
52

l2

P~juh!
E dbP~jub!P0~buh!

Si
l2 S br 2hD

52SiE dbP~buj,h!S br 2hD
52Si

Fopt

J
. ~A6!

Since we have not specified whatj is, this holds both for
Boolean as well as graded response perceptrons. For ex-
ample,j could be the fieldb itself, or a noisy version of it,
so that we would be dealing with the linear perceptron prob-
lem @16#.
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Result ~A6! enables us then to give an alternative pre-
scription for obtaining the optimal weight functionFopt. It is
easier to calculate the derivative

Fopt52SiJ
]Eopt

] Ĵi
5Sil

2J
]

] Ĵi
lnP~juh! ~A7!

than to perform the integration overb prescribed by Eq.~11!.
It is worth pointing out that prescriptions~11! and ~A7!

hold independently of our particular choice of noise~3!. For
example, noise could be added to the teacher fieldb instead,
and both prescriptions would still be valid.

Now we show that the Bayesian prescription of maximiz-
ing the probability of occurrence of the hypothesis given the
data leads toEopt. Note that

P~juĴ,S!5E dhP~juh!P~huĴ,S!5E dhP~juh!d~h2 Ĵ•S!

5P~juĴ•S!, ~A8!

so that

lnP~ Ĵuj,S!5 lnP~juĴ,S!1 lnP~ Ĵ!2 lnP~j!

5 lnP~juh!1const, ~A9!

once thea priori distribution for Ĵ is uniform. This may not
be the case in more involved situations with a nonuniform
hypothesis space.

It is important to note that the relevant quantity isĴ, not
h. The Bayesian prescription is to maximize the function
lnP(Ĵuj,S), which leads to the maximization of lnP(j uh), not
lnP(huj). The latter would lead to an extra term,
lnP0(h)52h2/2, which isnot a constant. The difference be-
tween P( Ĵuj,S) and P(huj) lies in the fact that the sum
h5( i yi of a large number of variables (yi5JiSi) with uni-
form priors has anonuniform~Gaussian! prior ~central limit
theorem!.

This relationship with Bayesian inference leads us to con-
jecture that the prescription given by Eq.~A7! continues to
be valid for other network architectures and learning situa-
tions whereP(J) is uniform. Of course, ifP(B) is known to
be nonuniform, this may lead us to use an adequate prior
P(J) so that improved performances may be attainable.
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